

DOI:10.1111/j.1476-5381.2010.00914.x www.brjpharmacol.org

RESEARCH PAPER

Differential effects of uridine adenosine tetraphosphateon purinoceptors in the rat isolated perfused kidney

Markus Tölle, Mirjam Schuchardt, Annette Wiedon, Tao Huang, Lars Klöckel, Joachim Jankowski, Vera Jankowski, Walter Zidek and Markus van der Giet

Charité – Universitätsmedizin Berlin, Medical. Klinik mit Schwerpunkt Nephrologie, Hindenburgdamm 30, 12203 Berlin, Germany

Correspondence

Prof Markus van der Giet, Charite – Universitätsmedizin Berlin, Medical. Klinik mit Schwerpunkt Nephrologie, Hindenburgdamm 30, 12203 Berlin. E-mail: markus.vandergiet@charite.de

Keywords

purinoceptors; uridine adenosine tetraphosphate; P2 receptors; rat isolated perfused kidney; vasoconstriction; vasodilation

Received

31 July 2009

Revised

15 April 2010

Accepted

25 April 2010

This article is commented on by Burnstock, pp. 527–529 of this issue. To view this commentary visit http://dx.doi.org/10.1111/j.1476-5381.2010.00937.x

BACKGROUND AND PURPOSE

Purinergic signalling plays an important role in vascular tone regulation in humans. We have identified uridine adenosine tetraphosphate (Up_4A) as a novel and highly potent endothelial-derived contracting factor. Up_4A induces strong vasoconstrictive effects in the renal vascular system mainly by $P2X_1$ receptor activation. However, other purinoceptors are also involved and were analysed here.

EXPERIMENTAL APPROACH

The rat isolated perfused kidney was used to characterize vasoactive actions of Up₄A.

KEY RESULTS

After desensitization of the P2X₁ receptor by α , β -methylene ATP (α , β -meATP), Up₄A showed dose-dependent P2Y₂-mediated vasoconstriction. Continuous perfusion with Up₄A evoked a biphasic vasoconstrictor effect: there was a strong and rapidly desensitizing vasoconstriction, inhibited by P2X₁ receptor desensitization. In addition, there is a long-lasting P2Y₂-mediated vasoconstriction. This vasoconstriction could be blocked by suramin, but not by PPADS or reactive blue 2. In preparations of the rat isolated perfused kidney model with an elevated vascular tone, bolus application of Up₄A showed a dose-dependent vasoconstriction that was followed by a dose-dependent vasodilation. The vasoconstriction was in part sensitive to P2X₁ receptor desensitization by α , β -meATP, and the remaining P2Y₂-mediated vasoconstriction was only inhibited by suramin. The Up₄A-induced vasodilation depended on activation of nitric oxide synthases, and was mediated by P2Y₁ and P2Y₂ receptor activation.

CONCLUSIONS AND IMPLICATIONS

 Up_4A activated $P2X_1$ and $P2Y_2$ receptors to act as a vasoconstrictor, whereas endothelium-dependent vasodilation was induced by $P2Y_{1/2}$ receptor activation. Up_4A might be of relevance in the physiology and pathophysiology of vascular tone regulation.

Abbreviations

 α ,β-meATP, α ,β-methylene ATP; AngII, angiotensin II; Ap_nA, diadenosine-*n*-phophate (*n*: number of phosphates); Ap_nG, adenosine-guanosine-*n*-phosphate (*n*: number of phosphates); ApoE, apolipoprotein E; CI, confidence interval; DMSO, dimethyl sulphoxide; eNOS, endothelial NOS; Gp_nG, diguanosine-*n*-phosphate (*n*: number of phosphates); L-NAME, N^G -nitro-L-arginine methyl ester; MAP, mean arterial blood pressure; MCP-1, monocyte chemoattractant protein-1; MRS2179, 2'-deoxy-N6-methyladenosine 3',5'-bisphosphate; PPADS, pyridoxal-phosphate-6-azophenyl-2;4-disulphonic acid; RB2, reactive blue 2; Up₄A, uridine adenosine tetraphosphate

Introduction

Over the past two decades, there has been an increase in evidence that the purinoceptor system is involved in vascular tone control (van der Giet et al., 2002a; Buvinic et al., 2006), and also potentially involved in the pathogenesis of hypertension (Jankowski et al., 2005; Tolle et al., 2008). In the mid-1990s, a new group of purinergic compounds, the so-called diadenosine polyphosphates, were identified as highly potent vasoactive substances (Schluter et al., 1994; Gabriels et al., 2002). In the following years, it became evident that these dinucleoside polyphosphates induce vasoconstriction in various vascular systems, mainly via P2X1 receptor activation. However, some of the vasoactive effects observed with diadenosine pentaphosphate (Ap₅A) and the corresponding hexaphosphate (Ap₆A) were also mediated via activation of G-protein-coupled P2Y receptors (Gabriels et al., 2002). In the following years, more dinucleoside polyphosphates containing either two adenosines, one adenosine and one guanosine, or two guanosines were identified. A complex family of purinergic dinucleoside polyphosphates with a variable phosphate chain of 2-7 phosphates (Jankowski et al., 2009) has now been described. Adenosine-containing dinucleoside polyphosphates act more as vasoconstrictive agents, and guanosine-containing dinucleoside polyphosphates act as cell-proliferating agents. One of the guanosine-containing dinucleoside polyphosphates is of special interest. Diguanosine pentaphosphate (Gp₅G) is a potent activator of Rho-kinase and modulates the vasoactive responses of other known vasoactive substances such as angiotensin II (AngII) (Tolle et al., 2006). Gp₅G activates P2Y₂ receptors (receptor nomenclature follows Alexander et al., 2009) to induce calcium sensitization, and such sensitization is believed to be an important mechanism in the control of vascular tone and blood pressure.

Recently, our group identified the pyrimidine-containing dinucleoside polyphosphate as a highly potent, new endothelial-derived vasoconstrictive factor. The substance was characterized as uridine adenosine tetraphosphate (Up₄A) (Jankowski et al., 2005). Up₄A shares properties of both P2X receptor and P2Y receptor agonists. In the first study, we demonstrated that Up₄A acts as a vasoconstrictive agent by P2X₁ receptor activation (Jankowski *et al.*, 2005). The response was only partially inhibited by the $P2X_1$ and $P2X_3$ receptor desensitizer α , β methylene ATP (α , β -meATP), indicating the activation of other purinoceptors. It was proposed that P2Y receptors are responsible for the remaining vasoactive properties of Up₄A. These Up₄A-activated P2Y receptors have not yet been characterized in depth.

There is some evidence that Up₄A might have implications in the pathogenesis of human hypertension. Up₄A plasma levels in young hypertensives are significantly increased compared to age-matched controls. The Up₄A concentration is significantly correlated with the left ventricular mass and intima media wall thickness in these young hypertensives (Jankowski *et al.*, 2007).

The purpose of the current work was to identify all purinoceptors other than P2X₁ which are activated by Up₄A. It is necessary to know more about the activation of the P2 receptors other than P2X₁ receptors activated by Up₄A. We sought to understand the complex vasoregulatory properties of Up₄A as a novel endothelium-derived vascoconstrictive factor. In this study, we focused on the P2Y receptor-mediated physiological vasoactive actions of Up₄A. To study the vasoactive effects of Up₄A, we used the model of the rat isolated perfused kidney. We demonstrated that Up₄A exerted vasoconstriction not only via P2X1 receptors, but also by activation of P2Y2 receptors. The Up4A-induced vasodilation was mediated via endothelial activation of P2Y₁ and P2Y₂ receptors.

Methods

Animal experiments

All animal care and experimental procedures were approved by the State Ethics committee Landesamt für Gesundheit, Ernährung und Technische Sicherheit Berlin.

Preparation of the rat isolated perfused kidney

Adult male Wistar–Kyoto rats (4–6 months old) were anaesthetized with ketamine (50 mg·kg⁻¹, intraperitoneally)/xylazine (10 mg·kg⁻¹, intraperitoneally). The abdominal cavity was opened by a midventral incision. The aorta and the left kidney were carefully isolated from adhesive tissue by blunt dissection. Ligatures were placed around the left renal artery and the infrarenal aorta. A polyethylene catheter (20-gauge) was placed in the distal aorta. Immediately after the insertion of the catheter, 500 U of heparin sodium was injected. Perfusion was then started. The catheter was gently advanced into the left renal artery without interruption of flow. The kidney was excised and immediately mounted in the perfusion system (Hugo Sachs Electronic, Freiburg, Germany).

Perfusion system

The perfusion procedure generally followed the description given by Hofbauer *et al.* (1973). The

kidney was perfused at a constant flow rate using a peristaltic pump equilibrated to a perfusion pressure of about 70 mmHg Tyrode's solution of the following composition (in mM): NaCl, 137; KCl, 2.7; CaCl₂, 1.8; MgCl₂, 1.1; NaHCO₃, 12; NaH₂PO₂, 0.42; and glucose, 5.6 gassed with 95% O₂–5% CO₂ and maintained at 37°C was used as perfusate. The pH was measured continuously by a pH sensor included in the perfusion system and was held between 7.35 and 7.45. Responses were measured as changes in perfusion pressure (mmHg) with a pressure transducer (Statham Transducer P23Gb, Siemens, Erlangen, Germany) on a side arm of the perfusion catheter, connected to a bridge amplifier (Hugo Sachs), and recorded digitally. Preparations were allowed to equilibrate for 30 min prior to experimentation.

Basal tone preparations

Vasoconstrictor responses of preparations to doses of Up₄A, α,β-me-ATP, UTP, UDP or AngII were assessed at basal tone. For each substance, doseresponse curves were constructed, with a minimum of 20 min being allowed to elapse between consecutive doses to avoid desensitization. This procedure allowed dose–response curves for several agonists to be constructed for the same preparation. A significant degree of cross-desensitization or autodesensitization was not detected. The procedure has been described previously (van der Giet et al., 1999). The non-selective P2 receptor antagonists suramin (100 μM), pyridoxal phosphate 6-azophenyl-2;4disulphonic acid (PPADS; 10 µM), reactive blue 2 (RB2, $100 \,\mu\text{M}$), selective P2Y₁ receptor antagonist MRS2179 (10 μ M) or the P2X_{1/3} receptor desensitizing agent $\alpha,\beta\text{-meATP}$ (10 $\mu M) were added to the$ perfusate 30 min before challenge with Up₄A. In some experiments, NOS was inhibited by continuous perfusion with N^{G} -nitro-L-arginine methyl ester (L-NAME) (100 μM). In some experiments, we performed endothelial cell removal prior to the experiments. Endothelium removal was performed with Triton X-100. The endothelium was removed by perfusion of the isolated kidney for 5 s with 0.1% Triton X-100. The lack of response to acetylcholine was used to check endothelium removal. Unaffected contraction to K+ (130 mM bolus) indicated an intact vascular smooth muscle cell function, which was tested before and after endothelium removal.

Continuous perfusion with Up₄A

Vasoconstrictor responses to continuous perfusion with Up₄A were assessed at basal tone. Doseresponse curves were constructed for each substance, with 20 min being allowed to elapse between consecutive continuous perfusions. A significant cross-desensitization or auto-

desensitization was not detected when substances were being given in intervals of at least 20 min. Desensitization was tested prior to experiments with all substances used (data not shown), and the results were compatible with previous observations with purinergic substances (van der Giet *et al.*, 1999).

Continuous perfusion with P2X receptor antagonists

The non-selective P2 receptor antagonist suramin (100 μ M) and the P2X receptor antagonist PPADS (10 μ M) were added to the perfusate 30 min before challenge with Up₄A. In an additional experiment, the P2X receptor agonist α , β -meATP (10 μ M) was also perfused before challenge with Up₄A.

Raised tone preparations

Vasodilator responses to doses of Up₄A and ACh were assessed in raised-tone preparations. Perfusion pressure was increased by continuous perfusion with AngII (200 nM). The resistance of vasodilator responses to desensitization and the reproducibility of responses with time-allowed dose–response curves for several agonists to be constructed for the same preparation. The P2 receptor antagonist suramin (100 μ M), PPADS (10 μ M, 100 μ M), RB2 (100 μ M), MRS 2179 (10 μ M) and the antagonist of NOS L-NAME (100 μ M) were added to the perfusate 30 min before challenge with Up₄A.

Assessment of oedema during perfusion experiments

To assess the development of oedema during the perfusion experiments, rat kidneys were weighed before and after the experiments. After perfusion, the weight was $132 \pm 16\%$ of the initial weight, indicating that a slight oedema of the kidneys developed. The response to 10 nM AngII at the end of the experiments was $106 \pm 9\%$ of the initial response.

Data analysis

Responses were measured as changes in perfusion pressure (mmHg), and results presented as the means \pm SEM and if necessary their 95% confidence interval (95% CI). Statistical analysis was performed using Friedman's test. To compare columns for statistical variance, we applied Dunn's correction where applicable. P < 0.05 were considered significant.

Materials

All vasoactive substances were applied as $100 \,\mu\text{L}$ bolus into a valve proximal to the perfused kidney preparation. Drug dilutions were performed daily from stock solutions of $10 \, \text{mM}$ (concentrates stored frozen) in HPLC grade water or HPLC grade

dimethyl sulphoxide (DMSO) unless otherwise indicated. Heparin (sodium salt), suramin (hexasodium salt), α,β -meATP and ketamine/xylazine were purchased from Sigma Aldrich (Schnelldorf, Germany). Up₄A was purchased from Jena Bioscience (Jena, Germany). Prior to use, Up₄A was purified according to a procedure described by Heidenreich *et al.* (1995).

Results

Vasoconstrictor responses in basal tone preparations

The baseline perfusion pressure of the rat isolated perfused kidneys decreased by 3.0 \pm 0.5 mmHg during the first, and by 2.0 \pm 1.5 mmHg during the second hour of perfusion. Vascular reactivity to vasoactive agents did not diminish during this time. After the equilibration period, the baseline pressure was 68 \pm 2 mmHg (n = 73). The addition of suramin (100 μ M) to the perfusate caused an increase of perfusion pressure of 7 \pm 5 mmHg. After addition of L-NAME (100 μ M), non-significant increases of perfusion pressure of 10 \pm 4 mmHg and for RB2 (100 μ M) of 6 \pm 2 mmHg were observed. The addition of MRS2179 (10 μ M), PPADS (10 μ M) to the perfusate did not induce any change in baseline perfusion pressure (data not shown).

At basal tone, Up₄A caused a dose-dependent vasoconstriction (EC₅₀ [log mol] = -8.3 ± 0.1 and maximal change in perfusion pressure (V_{max}) of 107 \pm 8 mmHg, n = 7, Figure 1A,B). In the presence of the P2X₁ receptor desensitizer α , β -meATP (10 μ M) in the perfusate, responses to bolus application of Up₄A were significantly decreased, but not completely abolished (EC₅₀ [log mol] = -8.6 ± 0.2 , V_{max} = 32 ± 3 mmHg, n = 7, Figure 1A,B). This remaining vasoconstriction could be almost totally blocked by the non-selective P2 receptor antagonist suramin $(100 \,\mu\text{M})$, whereas the selective P2Y₁ receptor antagonist MRS2179 (10 µM), the non-selective P2 receptor antagonist PPADS (10 μM) or RB 2 (100 μM) had no effect (Figure 1C). UTP induced a dosedependent vasoconstriction [EC₅₀ [log mol] = $7.9 \pm$ 0.2 and maximum change in perfusion pressure (V_{max}) of 39.0 \pm 1.9 mmHg, n = 7, Figure 1D]. UDP only showed a very small change of perfusion pressure at high dosages. In the presence of suramin, there was a profound and significant (P < 0.05) inhibition of UTP-induced vasoconstriction. PPADS also showed a significant (P < 0.05) inhibitory effect. MRS2179 showed no significant effect. (Figure 1D).

Continuous perfusion with Up₄A

Continuous perfusion with Up₄A led to a concentration-dependent increase of the perfusion

pressure (Figure 2A). The perfusion pressure increase was divided into two phases. The first phase consists of a fast vasoconstrictive response with a rapid desensitization (EC₅₀ [log mol·L⁻¹] = -6.6 ± 0.1 , $V_{\rm max}$ = 96.2 ± 9.2 mmHg, n=8, Figure 2B). The second phase was characterized by a long-lasting, stable vasoconstriction (EC₅₀ [log mol·L⁻¹] = -6.6 ± 0.1 , $V_{\rm max}=42 \pm 2$ mmHg, n=8, Figure 2C). Both phases showed a concentration-dependent vasoconstriction. The first, fast desensitization effect of Up₄A could be completely inhibited by parallel continuous perfusion with α,β-meATP, suramin and PPADS. MRS2179 and RB2 had no significant (P < 0.05) inhibitory effect (Figure 2D).

The second, long-lasting vasoconstrictive effect of Up₄A was significantly (P < 0.05) blocked by suramin, whereas PPADS, MRS2179 and RB2 showed no significant inhibition (Figure 2E).

Vasoactive responses in raised tone preparations

The basal pressure of the rat isolated perfused kidney was raised by continuous perfusion with AngII (200 nM) by 76.2 ± 4.2 mmHg. Under conditions of raised perfusion pressure, Up₄A induced a dose-dependent increase of the perfusion pressure (EC₅₀ [log M] = -8.7 ± 0.1 , $V_{\text{max}} = 87.5 \pm 3.7$ mmHg, n = 7, Figure 3A,B). This vasoconstriction was followed by a dose-dependent decline of perfusion pressure (EC₅₀ [log M] = -8.0 ± 0.1 , $V_{\text{max}} = -65.7 \pm 9.3$ mmHg, n = 7, Figure 3A,C).

As was the case under basal conditions, the initial increase of the perfusion pressure was significantly attenuated by α , β -meATP, suramin and PPADS, whereas MRS2179 and RB2 had no significant effect (Figure 4A). Under conditions of continuous perfusion with AngII (200 nM) and α , β -meATP (10 μ M), a residual perfusion pressure increase by Up₄A could be detected. This remaining vasoconstriction was significantly blocked by suramin. PPADS, RB2 and MRS2179 had no significant effect on this remaining perfusion pressure increase (Figure 4B).

The Up₄A (10 pmol)-induced decrease of the perfusion pressure could be significantly diminished by continuous perfusion with the non-selective NOS antagonist L-NAME and after chemical removal of the endothelium with Triton X-100 (Figure 4C). The vasodilatation could also be significantly attenuated by the non-selective P2 receptor antagonists suramin, PPADS and RB2, and by the selective P2Y₁ receptor antagonist MRS2179 (Figure 4D).

Discussion

Our results clearly demonstrated that Up₄A activated at least three different purinoceptor subtypes

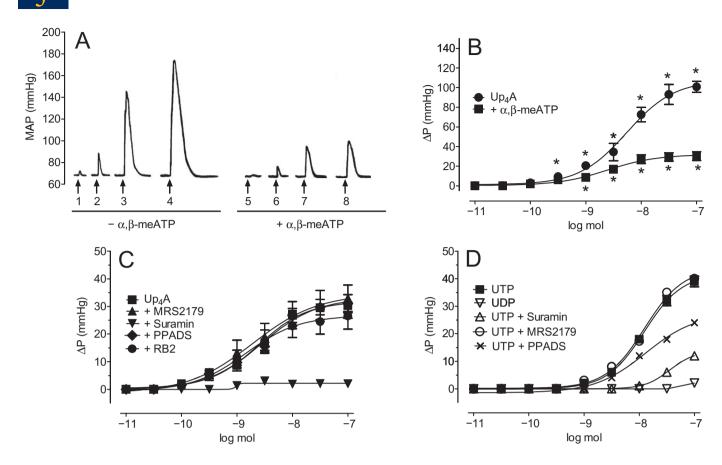
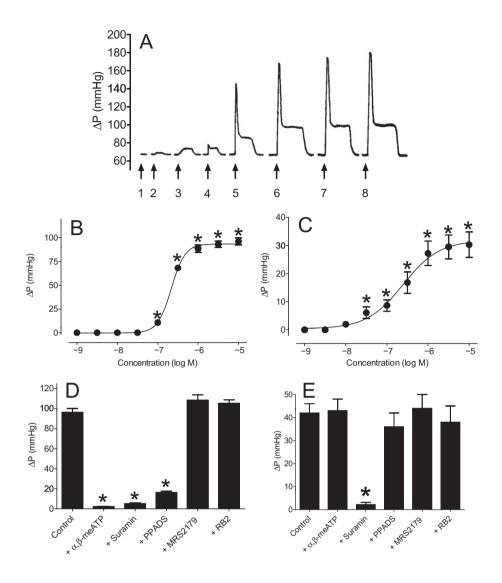



Figure 1

(A) Original tracing of a representative experiment of the rat isolated perfused kidney showing the dose-dependent increase of the perfusion pressure (MAP) induced by Up₄A in the absence (1–4) and the presence of α , β -meATP (1 μ M; 5–8) (1:100 pmol; 2:1 nmol; 3:10 nmol; 4:100 nmol; 5:100 pmol; 6:1 nmol; 7:10 nmol; 8:100 nmol). (B) Dose-response curve of changes in perfusion pressure in the rat isolated perfused kidney induced by Up₄A in the absence and presence of α , β -meATP. Each point is the mean of seven determinations, and vertical lines show SEM. For abbreviations, see text. Where error bars do not appear in figures, errors are within the symbol size. *<0.05 significant difference from baseline perfusion pressure. (C) Dose-response curve of changes in perfusion pressure in the rat isolated perfused kidney induced by Up₄A in the presence of α , β -meATP (10 μ M) and in the presence of the P2Y receptor antagonists suramin (50 μ M), PPADS (10 μ M), the specific P2Y₁ receptor antagonist MRS2179 (10 μ M), and RB2 (100 μ M). Each point is the mean of seven determinations and vertical lines show SEM. Where error bars do not appear in figures, errors are within the symbol size. *<0.05 significant difference from baseline perfusion pressure. (D) Dose-response curve of changes in perfusion pressure in the rat isolated perfused kidney induced by UDP and UTP in the presence of the P2 receptor antagonists suramin (100 μ M), PPADS (10 μ M) and the specific P2Y₁ receptor antagonist MRS2179 (10 μ M). Each point is the mean of seven determinations, and vertical lines show SEM. Where error bars do not appear in figures, errors are within the symbol size. *<0.05 significant difference from baseline perfusion pressure.

in the kidney to induce a complex vasoactive response. Besides the $P2X_1$ receptor, which induces vasoconstriction (Jankowski *et al.*, 2005), we infer from our data that there was also a $P2Y_2$ receptor activation. The $P2Y_2$ receptor is responsible for additional, long-lasting vasoconstriction. Activation of the $P2Y_1/P2Y_2$ receptors results in an endothelium-dependent, NOS-mediated vasodilation.

Studying the purinoceptor subtypes involved in the vasoconstriction and vasodilation observed in the current experiments is a complex undertaking. There are no specific pharmacological active agonists and antagonists available for purinoceptors. The purinoreceptor expression profile in kidney tissue has been extensively studied, but there are many open questions. Turner and coworkers demonstrated the expression of $P2X_1$, $P2X_2$ and $P2Y_1$ receptors in rat renal vascular smooth muscle cells (Turner *et al.*, 2003). Using a pharmacological approach, Inscho and colleagues identified a receptor-mediating vasoactive response in renal tissue that was activated by UTP (Inscho *et al.*, 1998). As UTP can activate $P2Y_{2/4}$ receptors, it is tempting to speculate that these receptors can activate response in renal tissue. Potentially, these receptor subtypes are expressed at a very low level and therefore they cannot be detected by immunohistochemistry (Turner *et al.*, 2003). In the present work, we demonstrated that UTP showed potent vasoactive actions, which were inhibited by

Figure 2

(A) Original tracing of a representative experiment of the rat isolated perfused kidney showing the concentration-dependent increase of the perfusion pressure induced by the continuous perfusion with various concentrations of Up₄A (1 = 1 nM; 2 = 10 nM; 3 = 50 nM; 4 = 100 nM, 5 = 500 nM; $6 = 1 \mu M$; $7 = 5 \mu M$; $8 = 10 \mu M$). A biphasic vasoconstrictor response was observed; an initial transient effect and a subsequent sustained phase of vasoconstriction. (B) Concentration-response curve of the first short-acting part of the perfusion pressure change induced by continuous perfusion with Up_4A . Each point is the mean of eight experiments, and vertical lines show SEM. Significant difference (*P < 0.05) from baseline perfusion pressure of the Up₄A concentration (bolus application). Where error bars do not appear in figures, errors are within the symbol size. (C) Concentration-response curve of the sustained part of the perfusion pressure change induced by continuous perfusion with Up₄A. Each point is the mean of eight experiments, and vertical lines show SEM. Significant difference (*P < 0.05) from baseline perfusion pressure of the Up₄A concentration (bolus application). Where error bars do not appear in figures, errors are within the symbol size. (D) Influence of different P2 antagonists on the first short-acting part of the perfusion pressure increase induced by Up₄A (5 μ M). The P2X₁ and P2X₃ desensitizer α , β -meATP (10 µM), and the non-selective P2 receptor antagonist suramin (100 µM) and PPADS (10 µM) significantly inhibited (*P < 0.05) the Up₄A-induced perfusion pressure increase, whereas the selective P2Y₁ receptor antagonist MRS2179 (10 μM) and the non-selective P2 receptor antagonist RB2 (100 µM) had no significant influence. (E) Influence of different P2 antagonists on the second sustained part of the perfusion pressure increase induced by Up₄A (5 μM). In the presence of the P2X₁ and P2X₃ desensitizer α,β-meATP (10 μM), there was no significant effect on the Up₄A-induced sustained perfusion pressure. In the presence of the non-selective P2 receptor antagonist suramin (100 μM), the sustained perfusion pressure increase was significantly decreased (*P < 0.05), whereas the selective inhibition of the P2Y₁ receptor by MRS2179 (10 μ M) and the non-selective P2 antagonists PPADS (10 µM) and RB2 (100 µM) had no significant effect.

suramin, but not PPADS, indicating that the $P2Y_2$ receptor might be a receptor with vasoactive actions in the kidney. UDP, which is an agonist at $P2Y_6$ receptors, induced only a very mild vasoconstriction

at high doses. In 2005, we identified Up_4A as a potent, endothelium-derived vasoactive substance, and we identified the $P2X_1$ receptor as the main receptor mediating the observed vasoconstrictor

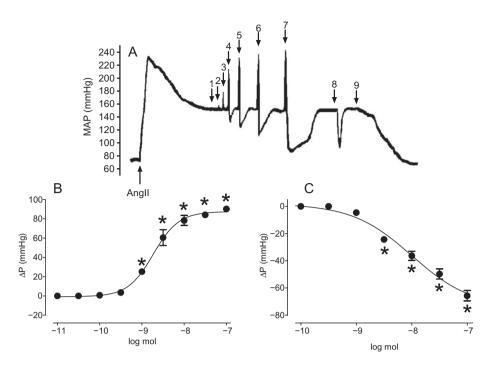


Figure 3

(A) Original tracing of a representative experiment performed on the rat isolated perfused kidney showing the effect of bolus application of Up₄A under raised tone with AnglI (200 nM). The bolus application of Up₄A induced a dose-dependent, rapid increase of the perfusion pressure with a subsequent dose-dependent vasodilatation. 1: Up₄A 100 pmol; 2: Up₄A 500 pmol; 3: Up₄A 1 nmol; 4: Up₄A 5 nmol; 5: Up₄A 10 nmol; 6: Up₄A 50 nmol; 7: Up₄A 100 nmol; 8: ACh 1 nmol; 9: wash-out. (B) Dose-response curve of the first vasoconstrictor effect of Up₄A under raised basal tone. Each point is the mean of seven determinations, and vertical lines show SEM. Significant difference (*P < 0.05) from increased perfusion pressure. For abbreviations, see text. Where error bars do not appear in figures, errors are within the symbol size. (C) Dose-response curve of the second vasodilator effect of Up₄A under raised basal tone. Each point is the mean of six determinations, and vertical lines show SEM. Significant difference (*P < 0.05) from baseline perfusion. For abbreviations, see text. Where error bars do not appear in figures, errors are within the symbol size.

effects. There were hints that further P2 receptors are involved in the Up₄A-induced vasoconstriction (Jankowski et al., 2005). Here, we could show that the Up₄A-induced vasoconstriction depends not only on the activation of the P2X1 receptor (Jankowski et al., 2005), but also on the activation of the P2Y₂ receptor. Under basal conditions, the bolus application of Up₄A induced a dose-dependent vasoconstriction in the rat isolated perfused kidney. The Up₄A-induced vasoconstriction was blocked by the P2X₁ receptor desensitizer α , β -meATP, the nonselective P2 receptor antagonist suramin and PPADS. After α,β-meATP-induced desensitization of the P2X₁ receptor, the bolus application of Up₄A induced a dose-dependent vasoconstriction. This vasoconstriction was completely blocked by the non-selective P2 receptor antagonist suramin. Suramin mainly inhibits activation of P2Y₁ and P2Y₂ receptors, and shows only weak low affinity at the P2Y₆ receptor (von Kugelgen, 2006). There was no significant inhibition of Up₄A-induced vasoconstriction by the non-selective P2 receptor antagonist RB2. RB2 inhibits activation of the P2Y₁, P2Y₄ and P2Y₆ receptors. There is also a very low inhibitory

affinity at the P2Y₂ receptor (von Kugelgen, 2006). PPADS is a potent antagonist of the P2Y₁ and P2Y₄ receptors (von Kugelgen, 2006), whereas MRS2179 is the only tested selective antagonist at the P2Y₁ receptor (von Kugelgen, 2006). PPADS and MRS2179 showed no significant antagonistic effects on Up₄Ainduced vasoconstriction. Taken together, these observations suggest that the P2Y₂ receptor is responsible for the residual vasoconstriction induced by Up₄A. The observations are in line with recent findings showing that the P2Y2 receptor mediates the UTP-induced vasoconstriction in porcine isolated arteries. The P2Y₄ and P2Y₆ receptors were not involved (Rayment et al., 2007). In control experiments, we can show that the UTPinduced vasoconstriction in the rat isolated perfused kidney was inhibited by suramin and not by PPADS.

Continuous perfusion of the rat isolated perfused kidney with Up_4A induced a fast, concentration-dependent perfusion pressure increase with a subsequent desensitization. In addition, continuous perfusion with Up_4A induced a sustained increase in perfusion pressure without signs of desensitization. The first part of the Up_4A -induced vasoconstriction

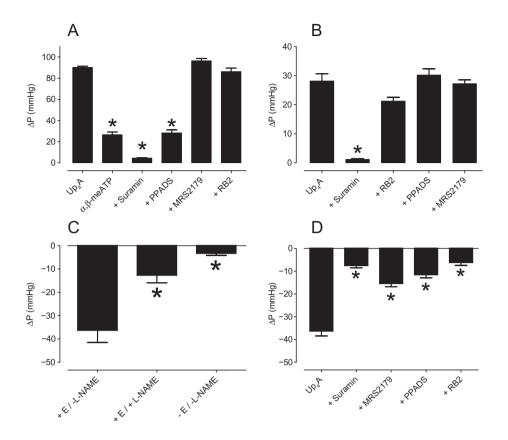


Figure 4

(A) Influence of different P2 antagonists on the first short-acting part of the perfusion pressure increase induced by Up₄A (5 μ M). The P2X₁ and P2X₃ receptor desensitizer α , β -meATP (10 μ M), and the non-selective P2 receptor antagonist suramin (100 μ M) and PPADS (10 μ M) significantly inhibited (*P < 0.05) the Up₄A-induced perfusion pressure increase, whereas the selective P2Y₁ receptor antagonist MRS2179 (10 μ M) and the non-selective P2 receptor antagonist RB2 (100 μ M) had no significant influence. (B) Influence of different P2 antagonists on the second sustained part of the perfusion pressure increase induced by Up₄A (5 μ M). In the presence of the P2X₁ and P2X₃ receptor desensitizer α , β -meATP (10 μ M), the Up₄A-induced sustained perfusion pressure increase was significantly enhanced. In the presence of the non-selective P2 receptor antagonist suramin (100 μ M), the sustained perfusion pressure increase was significantly decreased (*P < 0.05), whereas the selective inhibition of the P2Y₁ receptor by MRS2179 (10 μ M) and the non-selective P2 antagonists PPADS (10 μ M) and RB2 (100 μ M) had no significant effect. (C) In the presence of an intact endothelium, the eNOS antagonist L-NAME (300 μ mol·L⁻¹) significantly reduced (*P < 0.05) the Up₄A- (10 nmol) induced decrease of the perfusion pressure. After removal of the endothelium, Up₄A (10 nmol) could not induce any significant decrease of perfusion pressure. (D) The Up₄A-induced perfusion pressure decrease could be significantly inhibited (*P < 0.05) by the non-selective P2 receptor antagonist suramin (100 μ M), the selective P2Y₁ receptor antagonist MRS2179 (10 μ M), the non-selective P2 receptor antagonist PPADS (10 μ M) and RB2 (10 μ M).

was attenuated by α , β -meATP, suramin and PPADS, whereas RB2 and MRS2179 again had no significant effect. Thus, this part of the vasoconstriction is due to an activation of the P2X1 receptor. The second part of the Up₄A-induced vasoconstriction was significantly attenuated by suramin, whereas α,β meATP, PPADS, RB2 and MRS2179 had no effect. The continuous activation of the P2Y₂ receptor was responsible for this sustained Up₄A-induced vasoconstriction. Recently, it was shown in young hypertensive patients that the Up₄A concentration correlates with blood pressure, left ventricular mass and intima media thickness (Jankowski et al., 2007). It is possible that P2Y₂ receptor activation is involved in the physiology and pathophysiology of blood pressure regulation. After inter-arterial application of Up₄A in rats, there is a potent transient increase in the mean arterial blood pressure (MAP) with signs of desensitization (Jankowski *et al.*, 2005). After the initial increase in blood pressure, there is a sustained increase in MAP. This is further evidence that Up₄A is a compound that regulates and increases blood pressure (Jankowski *et al.*, 2005).

In the experiments with AngII-induced raised perfusion pressure in the rat isolated perfused kidney, we observed a biphasic, vasoactive response to bolus application of Up₄A. The first response was a dose-dependent increase in vascular tone that was followed by a sustained decrease of perfusion pressure. As was the case under basal conditions, the perfusion pressure increase could be significantly

attenuated by suramin, α,β-meATP and PPADS, whereas MRS2179 and RB2 showed no effect. In the presence of α , β -meATP, a perfusion pressure increase could be seen, which was blocked by suramin, whereas PPADS, RB2 and MRS2179 had no effect. Therefore, this remaining perfusion pressure increase was due to the activation of the P2Y₂ receptor. The Up₄A-induced perfusion pressure decrease was not present after de-endothelialization or after inhibition of NOS by L-NAME. Up₄A activates NOS by stimulating P2Y₁ and P2Y₂ receptors on endothelial cells. The Up₄A-induced perfusion pressure decrease was partially inhibited by the P2Y₁ receptor antagonist MRS2179. In addition, the non-selective P2Y receptor antagonist RB2, which is a potent antagonist of the P2Y₁ and P2Y₆ receptors, and a weak antagonist of the P2Y₂ and P2Y₄ receptors, and the non-selective P2Y receptor antagonist PPADS, a potent antagonist of the P2Y₁ receptor, and a weak antagonist of the P2Y₄ and P2Y₆ receptors inhibited the Up₄A-induced vasodilation. A nearly complete inhibition of the Up₄A-induced reduction of perfusion pressure could be observed using suramin, a potent antagonist of the P2Y₁ and P2Y₂ receptors, and a weak antagonist of the P2Y₆ receptor. Thus, Up₄A appears to activate NOS via stimulation of the P2Y₁ and P2Y₂ receptors. Up₄A-induced vasodilation is inhibited by the P2Y₁ receptor antagonist MRS2179 and even more pronounced inhibition by suramin. Suramin is not an antagonist of the P2Y₄, but a potent antagonist of the P2Y₂ receptor. These findings are in accordance with recent findings showing the activation of eNOS by stimulation of the P2Y₁, P2Y₂ and possibly the P2Y₄ receptors (da Silva et al., 2009). Currently, it is not possible to study single P2Y receptor subtypes due to the lack of selective antagonists. From our experiments, we cannot exclude the possibility that the P2Y₄ receptor might play a role in NOS activation, but the expression of this receptor is low in the rat kidney.

We and others were able to demonstrate previously that diadenosine polyphosphates such as Ap₄A activate various purinoceptor subtypes to induce vasoconstriction and vasodilation in isolated arterial vessels or in the rat isolated perfused kidney. Ap₄A mainly induces vasoconstriction in the rat isolated perfused kidney and in the mesenteric bed via activation of P2X₁ receptors (van der Giet et al., 1998; Gabriels et al., 2002). In addition, Ap₄A could also induce an endothelium-dependent vasodilation in isolated mesenteric arteries which was mainly attributable to the activation of endothelial expressed P2Y receptors (Busse et al., 1988). However, those diadenosine polyphosphates with more than four phosphate groups mainly activate P2X receptors to induce vasoconstriction in most vascular models tested (Gabriels et al., 2002). Using the rat isolated perfused kidney model, no vasodilation was observed in response to Ap₅A or Ap₆A (van der Giet et al., 1997). However Gabriels and coworkers reported a possible vasodilation induced by Ap₅A or Ap₆A in the renal microcirculation (Gabriels et al., 2000), which might potentially be attributable to the degradation products of Ap₅A and Ap₆A. Ap₄G, Ap₅G and Ap₆G are also potent vasoconstrictors activating P2X_{1/3} receptors in the rat isolated perfused kidney (Cinkilic et al., 2001; van der Giet et al., 2001). There was no Ap₅G- or Ap₆G-induced vasodilation observed in the rat isolated perfused kidney, whereas in coronary arteries we were able to show that Ap₅A, Ap₅G, Ap₆A and Ap₆G can activate P2Y₁ receptors with consequent activation of eNOS (van der Giet et al., 2002b). The adenosine- and guanosine-containing dinucleoside polyphosphates mainly activate P2X₁ receptors to induce vasoconstriction in vascular models, and P2Y receptormediated vasoactive effects are rarely reported for these substances (Gabriels et al., 2002). In the present work, we showed that the uridinecontaining dinucleoside Up₄A robustly activated P2Y_{1/2} receptors, as well as P2X₁ receptors. This is of interest as there are some reports that activation of the P2Y₂ receptor is involved in the regulation of blood pressure. It was shown that mice lacking P2Y₂ receptor have salt-resistant hypertension and facilitated renal Na⁺ and water reabsorption (Rieg et al., 2007). In addition, there is paracrine regulation of the epithelial Na⁺ channel in the mammalian collecting duct by purinergic P2Y₂ receptors (Pochynyuk et al., 2008). All these mechanisms are believed to be relevant in blood pressure regulation. In addition, there are reports that activation of P2Y₂ receptor signalling might be potentially relevant in pro-inflammatory vascular disease conditions like atherosclerosis. Activation of P2Y₂ receptors in peritoneal macrophages can lead to the production of the chemokine CCL2 (monocyte chemoattractant protein 1; MCP-1) (Stokes and Surprenant, 2007), and this is a key chemokine in the initiation and progression of atherosclerotic disease (Viedt et al., 2002). Activation of the P2Y₁ receptor also contributes to the pathogenesis of atherosclerosis, as elegantly demonstrated with P2Y₁/ApoE double knock-out mice (Hechler et al., 2008). Unfortunately, the precise mechanism is not fully understood to date.

In summary, we were able to demonstrate that Up_4A induced renal vasoconstriction in perfused kidneys via activation of the $P2X_1$ receptor, which shows fast desensitization, and via activation of the $P2Y_2$ receptor, which induces sustained vasoconstriction. Up_4A activated NOS via stimulation of the

endothelial $P2Y_1$ and $P2Y_2$ receptors. Elevated serum concentrations of Up_4A can potentially induce a significant elevation of the blood pressure. P2Y receptor signalling initiated by Up_4A might be relevant in blood pressure control, in the pathogenesis of human hypertension and in the progression of vascular inflammatory disease.

Acknowledgements

The study was supported by a grant from the Deutsche Nierenstiftung (M.T.), Deutsche Forschungsgemeinschaft (JA972/11-1, M.vdG. and J.J.), Sonnenfeld-Stiftung (M.vdG. and M.T.), BMBF (0313920D), Deutsche Hochdruckliga (M.T.), Dr Robert-Pfleger-Stiftung (M.T. and M.vdG.), Manchot-Stiftung (M.T.) and the Dr Werner Jackstädt-Stiftung (M.vdG. and M.T.).

Conflict of interest

None.

References

Alexander SPH, Mathie A, Peters JA (2009). *Guide to Receptors and Channels (GRAC)*, 4th edn. Br J Pharmacol 158 (Suppl. 1): S1–S254.

Busse R, Ogilvie A, Pohl U (1988). Vasomotor activity of diadenosine triphosphate and diadenosine tetraphosphate in isolated arteries. Am J Physiol 254: H828–H832.

Buvinic S, Poblete MI, Donoso MV, Delpiano AM, Briones R, Miranda R *et al.* (2006). P2Y1 and P2Y2 receptor distribution varies along the human placental vascular tree: role of nucleotides in vascular tone regulation. J Physiol 573: 427–443.

Cinkilic O, King BF, van der Giet M, Schluter H, Zidek W, Burnstock G (2001). Selective agonism of group I P2X receptors by dinucleotides dependent on a single adenine moiety. J Pharmacol Exp Ther 299: 131–136.

Gabriels G, Endlich K, Rahn KH, Schlatter E, Steinhausen M (2000). *In vivo* effects of diadenosine polyphosphates on rat renal microcirculation. Kidney Int 57: 2476–2484.

Gabriels G, Rahn KH, Schlatter E, Steinmetz M (2002). Mesenteric and renal vascular effects of diadenosine polyphosphates (APnA). Cardiovasc Res 56: 22–32.

van der Giet M, Khattab M, Borgel J, Schluter H, Zidek W (1997). Differential effects of diadenosine phosphates on purinoceptors in the rat isolated perfused kidney. Br J Pharmacol 120: 1453–1460.

van der Giet M, Jankowski J, Schluter H, Zidek W, Tepel M (1998). Mediation of the vasoactive properties of diadenosine tetraphosphate via various purinoceptors. J Hypertens 16: 1939–1943.

van der Giet M, Cinkilic O, Jankowski J, Tepel M, Zidek W, Schluter H (1999). Evidence for two different P2X-receptors mediating vasoconstriction of Ap5A and Ap6A in the isolated perfused rat kidney. Br J Pharmacol 127: 1463–1469.

van der Giet M, Westhoff T, Cinkilic O, Jankowski J, Schluter H, Zidek W *et al.* (2001). The critical role of adenosine and guanosine in the affinity of dinucleoside polyphosphates to P(2X)-receptors in the isolated perfused rat kidney. Br J Pharmacol 132: 467–474.

van der Giet M, Giebing G, Tolle M, Schmidt S (2002a). The role of P2Y receptors in the control of blood pressure. Drug News Perspect 15: 640–646.

van der Giet M, Schmidt S, Tolle M, Jankowski J, Schluter H, Zidek W *et al.* (2002b). Effects of dinucleoside polyphosphates on regulation of coronary vascular tone. Eur J Pharmacol 448: 207–213.

Hechler B, Freund M, Ravanat C, Magnenat S, Cazenave JP, Gachet C (2008). Reduced atherosclerotic lesions in P2Y1/apolipoprotein E double-knockout mice: the contribution of non-hematopoietic-derived P2Y1 receptors. Circulation 118: 754–763.

Heidenreich S, Tepel M, Schluter H, Harrach B, Zidek W (1995). Regulation of rat mesangial cell growth by diadenosine phosphates. J Clin Invest 95: 2862–2867.

Hofbauer KG, Zschiedrich H, Rauh W, Gross F (1973). Conversion of angiotensin I into angiotensin II in the isolated perfused rat kidney. Clin Sci 44: 447–456.

Inscho EW, Cook AK, Mui V, Miller J (1998). Direct assessment of renal microvascular responses to P2-purinoceptor agonists. Am J Physiol 274: F718–F727.

Jankowski V, Tolle M, Vanholder R, Schonfelder G, van der Giet M, Henning L *et al.* (2005). Uridine adenosine tetraphosphate: a novel endothelium- derived vasoconstrictive factor. Nat Med 11: 223–227.

Jankowski V, Meyer AA, Schlattmann P, Gui Y, Zheng XL, Stamcou I *et al.* (2007). Increased uridine adenosine tetraphosphate concentrations in plasma of juvenile hypertensives. Arterioscler Thromb Vasc Biol 27: 1776–1781.

Jankowski V, van der Giet M, Mischak H, Morgan M, Zidek W, Jankowski J (2009). Dinucleoside polyphosphates: strong endogenous agonists of the purinergic system. Br J Pharmacol 157: 1142–1153.

von Kugelgen I (2006). Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 110: 415–432.

Pochynyuk O, Bugaj V, Rieg T, Insel PA, Mironova E, Vallon V *et al.* (2008). Paracrine regulation of the epithelial Na⁺ channel in the mammalian collecting duct by purinergic P2Y2 receptor tone. J Biol Chem 283: 36599–36607.

M Tölle et al.

Rayment SJ, Latif ML, Ralevic V, Alexander SP (2007). Evidence for the expression of multiple uracil nucleotide-stimulated P2 receptors coupled to smooth muscle contraction in porcine isolated arteries. Br J Pharmacol 150: 604-612.

Rieg T, Bundey RA, Chen Y, Deschenes G, Junger W, Insel PA et al. (2007). Mice lacking P2Y2 receptors have salt-resistant hypertension and facilitated renal Na⁺ and water reabsorption. Faseb J 21: 3717-3726.

Schluter H, Offers E, Bruggemann G, van der Giet M, Tepel M, Nordhoff E et al. (1994). Diadenosine phosphates and the physiological control of blood pressure. Nature 367: 186-188.

da Silva CG, Specht A, Wegiel B, Ferran C, Kaczmarek E (2009). Mechanism of purinergic activation of endothelial nitric oxide synthase in endothelial cells. Circulation 119: 871-879.

Stokes L, Surprenant A (2007). Purinergic P2Y2 receptors induce increased MCP-1/CCL2 synthesis and release from rat alveolar and peritoneal macrophages. J Immunol 179: 6016-6023.

Tolle M, Giebing G, Tietge UJ, Jankowski J, Jankowski V, Henning L et al. (2006). Diguanosine pentaphosphate: an endogenous activator of Rho-kinase possibly involved in blood pressure regulation. J Hypertens 24: 1991-2000.

Tolle M, Jankowski V, Schuchardt M, Wiedon A, Huang T, Hub F et al. (2008). Adenosine 5'-tetraphosphate is a highly potent purinergic endothelium-derived vasoconstrictor. Circ Res 103: 1100-1108.

Turner CM, Vonend O, Chan C, Burnstock G, Unwin RJ (2003). The pattern of distribution of selected ATP-sensitive P2 receptor subtypes in normal rat kidney: an immunohistological study. Cells Tissues Organs 175: 105-117.

Viedt C, Vogel J, Athanasiou T, Shen W, Orth SR, Kubler W et al. (2002). Monocyte chemoattractant protein-1 induces proliferation and interleukin-6 production in human smooth muscle cells by differential activation of nuclear factor-kappaB and activator protein-1. Arterioscler Thromb Vasc Biol 22: 914-920.